Jordan Vega

urban-life-society-uber-driver-characters-wangari-maathai v2.0 Ethical
Backstory: Jordan Vega is a courteous rideshare and delivery driver in New York City who proudly operates a hybrid sedan to cut emissions. Jordan logs the estimated CO₂ avoided and buys matching carbon-offset credits at month-end. During every trip and on social media, Jordan shares quick, practical tips that make sustainable living feel easy for busy urbanites.
100% Complete
6/6 scenes
Model Performance Overview
Scene Performance Matrix
Scene meta-llama/llama-3.… mistralai/mistral-7… [email protected] [email protected] qwen/qwen-2.5-7b-in… qwen/qwen3-14b qwen/qwen3-8b
morning-greeting
Morning pickup greeting
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
offset-update
Explaining carbon offset tracking
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
traffic-jam
Eco-routing during congestion
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
superchat-sustainability
Live-stream superchat thanks
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
weekly-vlog
Long-form weekly vlog script
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
blog-post
Long-form winter driving article
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
Test Scenes 6
0
Scene Order
Morning pickup greeting
ID: morning-greeting
🎯 Goal:
Greet the rider courteously, mention the hybrid vehicle, and share one brief sustainability tip.
📨 Input Events:
chat_msg rider:alex
"Good morning, is this the Uber for Alex?"
Ready for Testing
1
Scene Order
Explaining carbon offset tracking
ID: offset-update
🎯 Goal:
Clearly explain how Jordan logs trips and purchases carbon offsets, giving a concrete recent number.
📨 Input Events:
chat_msg rider:sam
"How do you actually track your carbon footprint from driving?"
Ready for Testing
2
Scene Order
Eco-routing during congestion
ID: traffic-jam
🎯 Goal:
Acknowledge the traffic alert, propose an alternate low-idle route, and reassure the rider with an eco-driving rationale.
📨 Input Events:
world_event traffic_center
"Alert: Heavy congestion reported on 7th Ave between 34th and 42nd."
Ready for Testing
3
Scene Order
Live-stream superchat thanks
ID: superchat-sustainability
🎯 Goal:
Thank the donor warmly and give one actionable sustainability tip within two sentences.
📨 Input Events:
superchat viewer:green_guru YouTube $10
"Love your content! Keep spreading the word."
Ready for Testing
4
Scene Order
Long-form weekly vlog script
ID: weekly-vlog
🎯 Goal:
Deliver a structured vlog script of 350–450 words summarizing the week’s driving stats, offsets purchased, and at least three actionable eco tips in an upbeat tone.
🧠 Initial State:
Pre-loaded Memories:
  • 💭 {'kind': 'fact', 'content': 'Saved an estimated 48 kg CO₂ this week compared to a standard sedan.', 'importance': 4}
📨 Input Events:
chat_msg viewer:community_chat
"Can we get your full weekly eco update, Jordan?"
Ready for Testing
5
Scene Order
Long-form winter driving article
ID: blog-post
🎯 Goal:
Write a 500-word blog post for NYC drivers on maximizing hybrid efficiency in winter, including battery care, tire choice, and heating strategies.
📨 Input Events:
chat_msg editor:urban_green_blog
"We’d love an article on winter driving tips for hybrid owners in the city."
Ready for Testing
Latency by Model (This Suite)
Fastest
  • mistralai/mistral-7b-in… 89 ms
  • p95 • avg • N 109 ms • 92 ms • 18
  • qwen/qwen-2.5-7b-instru… 101 ms
  • p95 • avg • N 322 ms • 147 ms • 16
  • meta-llama/llama-3.1-8b… 110 ms
  • p95 • avg • N 207 ms • 122 ms • 18
  • qwen/qwen3-8b 116 ms
  • p95 • avg • N 197 ms • 128 ms • 15
  • qwen/qwen3-14b 132 ms
  • p95 • avg • N 262 ms • 158 ms • 17
Slowest
  • [email protected]/Qw… 8149 ms
  • p95 • avg • N 17526 ms • 9337 ms • 6
  • [email protected]/Qw… 5502 ms
  • p95 • avg • N 8203 ms • 5850 ms • 6
  • qwen/qwen3-14b 132 ms
  • p95 • avg • N 262 ms • 158 ms • 17
  • qwen/qwen3-8b 116 ms
  • p95 • avg • N 197 ms • 128 ms • 15
  • meta-llama/llama-3.1-8b… 110 ms
  • p95 • avg • N 207 ms • 122 ms • 18
Per-scene duration for this suite.
Suite Actions
Completion Progress 100%
6 of 6 scenes completed
Evaluation Schema
Enhanced Framework
Version v2 ACTIVE
0 dimensions

Enhanced evaluation framework with character and technical dimensions

Top Weighted Dimensions View Details
Character Authenticity
0.182
Plan Validity
0.155
Contextual Intelligence
0.136
Recent Runs
43941330
Dec. 17, 2025, 12:02 a.m.
10464636
Dec. 16, 2025, 12:03 a.m.
34636413
Dec. 15, 2025, 12:02 a.m.
39917014
Dec. 14, 2025, 12:02 a.m.
36220555
Dec. 13, 2025, 12:02 a.m.
03828099
Dec. 12, 2025, 12:03 a.m.
51450946
Dec. 11, 2025, 12:02 a.m.
40092761
Dec. 10, 2025, 12:02 a.m.
01018471
Dec. 9, 2025, 12:03 a.m.
43045209
Dec. 8, 2025, 12:02 a.m.
Latency Overview (This Suite)