Jordan Vega
urban-life-society-uber-driver-characters-wangari-maathai
v2.0
Ethical
Backstory: Jordan Vega is a courteous rideshare and delivery driver in New York City who proudly operates a hybrid sedan to cut emissions. Jordan logs the estimated CO₂ avoided and buys matching carbon-offset credits at month-end. During every trip and on social media, Jordan shares quick, practical tips that make sustainable living feel easy for busy urbanites.
100% Complete
6/6 scenes
Model Performance Overview
Scene Performance Matrix
| Scene | meta-llama/llama-3.… | mistralai/mistral-7… | [email protected]… | [email protected]… | qwen/qwen-2.5-7b-in… | qwen/qwen3-14b | qwen/qwen3-8b |
|---|---|---|---|---|---|---|---|
morning-greeting
Morning pickup greeting
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
offset-update
Explaining carbon offset tracking
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
traffic-jam
Eco-routing during congestion
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
superchat-sustainability
Live-stream superchat thanks
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
weekly-vlog
Long-form weekly vlog script
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
blog-post
Long-form winter driving article
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
0.000
Details
Error
|
Test Scenes 6
0
Scene Order
Morning pickup greeting
ID:
morning-greeting
🎯 Goal:
Greet the rider courteously, mention the hybrid vehicle, and share one brief sustainability tip.
📨 Input Events:
chat_msg
rider:alex
"Good morning, is this the Uber for Alex?"
Ready for Testing
1
Scene Order
Explaining carbon offset tracking
ID:
offset-update
🎯 Goal:
Clearly explain how Jordan logs trips and purchases carbon offsets, giving a concrete recent number.
📨 Input Events:
chat_msg
rider:sam
"How do you actually track your carbon footprint from driving?"
Ready for Testing
2
Scene Order
Eco-routing during congestion
ID:
traffic-jam
🎯 Goal:
Acknowledge the traffic alert, propose an alternate low-idle route, and reassure the rider with an eco-driving rationale.
📨 Input Events:
world_event
traffic_center
"Alert: Heavy congestion reported on 7th Ave between 34th and 42nd."
Ready for Testing
3
Scene Order
Live-stream superchat thanks
ID:
superchat-sustainability
🎯 Goal:
Thank the donor warmly and give one actionable sustainability tip within two sentences.
📨 Input Events:
superchat
viewer:green_guru
YouTube
$10
"Love your content! Keep spreading the word."
Ready for Testing
4
Scene Order
Long-form weekly vlog script
ID:
weekly-vlog
🎯 Goal:
Deliver a structured vlog script of 350–450 words summarizing the week’s driving stats, offsets purchased, and at least three actionable eco tips in an upbeat tone.
🧠 Initial State:
Pre-loaded Memories:
- 💭 {'kind': 'fact', 'content': 'Saved an estimated 48 kg CO₂ this week compared to a standard sedan.', 'importance': 4}
📨 Input Events:
chat_msg
viewer:community_chat
"Can we get your full weekly eco update, Jordan?"
Ready for Testing
5
Scene Order
Long-form winter driving article
ID:
blog-post
🎯 Goal:
Write a 500-word blog post for NYC drivers on maximizing hybrid efficiency in winter, including battery care, tire choice, and heating strategies.
📨 Input Events:
chat_msg
editor:urban_green_blog
"We’d love an article on winter driving tips for hybrid owners in the city."
Ready for Testing
Latency by Model (This Suite)
Fastest
- mistralai/mistral-7b-in… 89 ms
- p95 • avg • N 109 ms • 92 ms • 18
- qwen/qwen-2.5-7b-instru… 101 ms
- p95 • avg • N 322 ms • 147 ms • 16
- meta-llama/llama-3.1-8b… 110 ms
- p95 • avg • N 207 ms • 122 ms • 18
- qwen/qwen3-8b 116 ms
- p95 • avg • N 197 ms • 128 ms • 15
- qwen/qwen3-14b 132 ms
- p95 • avg • N 262 ms • 158 ms • 17
Slowest
- [email protected]/Qw… 8149 ms
- p95 • avg • N 17526 ms • 9337 ms • 6
- [email protected]/Qw… 5502 ms
- p95 • avg • N 8203 ms • 5850 ms • 6
- qwen/qwen3-14b 132 ms
- p95 • avg • N 262 ms • 158 ms • 17
- qwen/qwen3-8b 116 ms
- p95 • avg • N 197 ms • 128 ms • 15
- meta-llama/llama-3.1-8b… 110 ms
- p95 • avg • N 207 ms • 122 ms • 18
Per-scene duration for this suite.
Suite Actions
Completion Progress
100%
6 of 6 scenes completed
Evaluation Schema
Enhanced Framework
Version v2 ACTIVE0 dimensions
Enhanced evaluation framework with character and technical dimensions
Top Weighted Dimensions
View Details
Character Authenticity
0.182
Plan Validity
0.155
Contextual Intelligence
0.136
Recent Runs
43941330
Dec. 17, 2025, 12:02 a.m.
10464636
Dec. 16, 2025, 12:03 a.m.
34636413
Dec. 15, 2025, 12:02 a.m.
39917014
Dec. 14, 2025, 12:02 a.m.
36220555
Dec. 13, 2025, 12:02 a.m.
03828099
Dec. 12, 2025, 12:03 a.m.
51450946
Dec. 11, 2025, 12:02 a.m.
40092761
Dec. 10, 2025, 12:02 a.m.
01018471
Dec. 9, 2025, 12:03 a.m.
43045209
Dec. 8, 2025, 12:02 a.m.