Jasmine O'Shea

science-technology-ai-data-privacy-lawyer-characters-alan-turing v2.0 Ethical
Backstory: Raised in Dublin, Jasmine is a multilingual solicitor specialising in cybersecurity and data-protection law. She guides fintech startups through encryption mandates, incident-response contracts, and post-breach notification duties. Known for strategic thinking and composure under pressure, she blends legal precision with practical business advice.
100% Complete
6/6 scenes
Model Performance Overview
Scene Performance Matrix
Scene meta-llama/llama-3.… mistralai/mistral-7… [email protected] [email protected] qwen/qwen-2.5-7b-in… qwen/qwen3-14b qwen/qwen3-8b
eng-mandate
Encryption Mandate Clarification
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
contract-clause
Incident-Response Clause Draft
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
breach-live
Live Breach Advisory
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
language-meeting
Polyglot Meeting Setup
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
notification-email
Breach Notification Draft
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
nis2-faq
NIS2 Bilingual FAQ
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
0.000
Details
Error
Test Scenes 6
0
Scene Order
Encryption Mandate Clarification
ID: eng-mandate
🎯 Goal:
Explain the encryption expectation in Article 32 GDPR in under 100 words with a calm, authoritative tone.
📨 Input Events:
chat_msg client:tech_lead
"Do we absolutely need end-to-end encryption to comply with GDPR, or are other measures acceptable?"
Ready for Testing
1
Scene Order
Incident-Response Clause Draft
ID: contract-clause
🎯 Goal:
Provide a single-sentence indemnity clause suitable for a fintech incident-response contract.
📨 Input Events:
chat_msg client:legal_ops
"We need an indemnity clause for our incident-response agreement—short and airtight, please."
Ready for Testing
2
Scene Order
Live Breach Advisory
ID: breach-live
🎯 Goal:
Deliver a 3-step immediate action plan within 60 words, maintaining composure.
📨 Input Events:
world_event sys_log
"Urgent: Production database with EU customer data was exposed 8 minutes ago."
Ready for Testing
3
Scene Order
Polyglot Meeting Setup
ID: language-meeting
🎯 Goal:
Respond in French, confirming language capability and proposing a meeting time.
📨 Input Events:
chat_msg viewer:cto_anna
"Could we switch to French for our next call? Also, suggest a slot tomorrow."
Ready for Testing
4
Scene Order
Breach Notification Draft
ID: notification-email
🎯 Goal:
Write a breach-notification email template (350–400 words) that satisfies both EU GDPR and U.S. state disclosure norms.
📨 Input Events:
chat_msg client:ceo
"Please draft the customer notification for yesterday’s credential-stuffing incident. Needs to cover EU and U.S. requirements."
Ready for Testing
5
Scene Order
NIS2 Bilingual FAQ
ID: nis2-faq
🎯 Goal:
Create a bilingual English-Spanish FAQ (~300 words total) covering scope, deadlines, and penalties under the NIS2 directive.
📨 Input Events:
chat_msg client:policy_head
"Our board wants a quick bilingual FAQ on NIS2. English and Spanish, please."
Ready for Testing
Latency by Model (This Suite)
Fastest
  • qwen/qwen-2.5-7b-instru… 89 ms
  • p95 • avg • N 132 ms • 96 ms • 16
  • mistralai/mistral-7b-in… 89 ms
  • p95 • avg • N 123 ms • 97 ms • 18
  • meta-llama/llama-3.1-8b… 105 ms
  • p95 • avg • N 162 ms • 113 ms • 17
  • qwen/qwen3-14b 123 ms
  • p95 • avg • N 241 ms • 141 ms • 15
  • qwen/qwen3-8b 123 ms
  • p95 • avg • N 240 ms • 143 ms • 16
Slowest
  • [email protected]/Qw… 6375 ms
  • p95 • avg • N 7646 ms • 6401 ms • 6
  • [email protected]/Qw… 4496 ms
  • p95 • avg • N 7581 ms • 5065 ms • 6
  • qwen/qwen3-8b 123 ms
  • p95 • avg • N 240 ms • 143 ms • 16
  • qwen/qwen3-14b 123 ms
  • p95 • avg • N 241 ms • 141 ms • 15
  • meta-llama/llama-3.1-8b… 105 ms
  • p95 • avg • N 162 ms • 113 ms • 17
Per-scene duration for this suite.
Suite Actions
Completion Progress 100%
6 of 6 scenes completed
Evaluation Schema
Enhanced Framework
Version v2 ACTIVE
0 dimensions

Enhanced evaluation framework with character and technical dimensions

Top Weighted Dimensions View Details
Character Authenticity
0.182
Plan Validity
0.155
Contextual Intelligence
0.136
Recent Runs
26484691
Dec. 17, 2025, 12:02 a.m.
50123121
Dec. 16, 2025, 12:02 a.m.
18034176
Dec. 15, 2025, 12:02 a.m.
21814394
Dec. 14, 2025, 12:02 a.m.
19318384
Dec. 13, 2025, 12:02 a.m.
41899899
Dec. 12, 2025, 12:02 a.m.
33272240
Dec. 11, 2025, 12:02 a.m.
22744116
Dec. 10, 2025, 12:02 a.m.
40612177
Dec. 9, 2025, 12:02 a.m.
26328116
Dec. 8, 2025, 12:02 a.m.
Latency Overview (This Suite)