Dr. Maya Thompson

science-technology-ai-ai-ethicist-characters-ada-lovelace v2.0 Ethical
Backstory: Dr. Maya Thompson is a seasoned technology policy advisor who bridges computer science and social science, guiding governments on ethical AI regulation. She balances deep technical expertise with a passion for public welfare, always aiming to make complex issues understandable for diverse stakeholders.
100% Complete
4/4 scenes
Model Performance Overview
Scene Performance Matrix
Scene deepseek/deepseek-r… google/gemini-2.5-f… google/gemma-3-12b-… meta-llama/llama-3.… microsoft/phi-3-med… microsoft/phi-3.5-m… mistralai/mistral-7… neversleep/noromaid… [email protected] [email protected] qwen/qwen-2.5-7b-in… qwen/qwen3-14b qwen/qwen3-8b
citizen-concern
Addressing Hiring Discrimination
0.677
Details
0.600
Details
0.753
Details
0.528
Details
0.000
Details
0.000
Details
Error
0.567
Details
0.000
Details
Error
0.000
Details
Error
0.712
Details
0.754
Details
0.675
Details
0.708
Details
minister-memo
Policy Memo on Data Governance
0.586
Details
0.701
Details
0.804
Details
0.647
Details
0.000
Details
0.799
Details
0.606
Details
0.000
Details
Error
0.000
Details
Error
0.566
Details
0.653
Details
0.272
Details
0.558
Details
podcast-interview
Podcast Segment on Transparency vs. Trade Secrets
0.374
Details
0.589
Details
0.669
Details
0.617
Details
0.000
Details
0.539
Details
0.302
Details
0.000
Details
Error
0.000
Details
Error
0.518
Details
0.315
Details
0.669
Details
0.536
Details
student-clarification
Explaining Fairness vs. Bias
0.668
Details
0.634
Details
0.681
Details
0.000
Details
0.000
Details
0.616
Details
0.715
Details
0.000
Details
Error
0.000
Details
Error
0.714
Details
0.695
Details
0.678
Details
0.749
Details
Test Scenes 4
0
Scene Order
Addressing Hiring Discrimination
ID: citizen-concern
🎯 Goal:
Offer a concise, empathetic explanation of how to audit an AI hiring tool for bias and suggest one actionable next step.
📨 Input Events:
chat_msg viewer:concerned_citizen
"I'm worried the AI our company uses for hiring might be discriminating against older applicants. What should we do?"
Ready for Testing
1
Scene Order
Policy Memo on Data Governance
ID: minister-memo
🎯 Goal:
Deliver a well-structured policy memo (~600 words) with headings, legal references, and three clear recommendations for responsible AI data governance in public education.
📨 Input Events:
chat_msg viewer:education_minister
"We need guidance on data governance for AI tools in public schools. Could you draft a detailed memo?"
Ready for Testing
2
Scene Order
Podcast Segment on Transparency vs. Trade Secrets
ID: podcast-interview
🎯 Goal:
Provide a conversational, roughly 5-minute spoken answer (~500 words) explaining how policymakers can balance algorithmic transparency with proprietary protections.
📨 Input Events:
chat_msg viewer:podcast_host
"Listeners keep asking: how do we balance transparency requirements with companies' need to protect trade secrets in AI? Your thoughts?"
Ready for Testing
3
Scene Order
Explaining Fairness vs. Bias
ID: student-clarification
🎯 Goal:
Give a brief, clear analogy and definitions that help a student distinguish between fairness and bias in machine learning.
📨 Input Events:
chat_msg viewer:grad_student
"I’m confused—what’s the difference between fairness and bias in machine learning?"
Ready for Testing
Latency by Model (This Suite)
Fastest
  • neversleep/noromaid-20b 8554 ms
  • p95 • avg • N 25170 ms • 12266 ms • 6
  • [email protected]/Qw… 12182 ms
  • p95 • avg • N 13614 ms • 12396 ms • 4
  • google/gemini-2.5-flash 19461 ms
  • p95 • avg • N 21011 ms • 18602 ms • 7
  • qwen/qwen-2.5-7b-instru… 20868 ms
  • p95 • avg • N 103614 ms • 38054 ms • 7
  • mistralai/mistral-7b-in… 22869 ms
  • p95 • avg • N 27527 ms • 22913 ms • 7
Slowest
  • microsoft/phi-3-medium-… 166388 ms
  • p95 • avg • N 214375 ms • 167413 ms • 8
  • [email protected]/Qw… 44294 ms
  • p95 • avg • N 47772 ms • 44639 ms • 4
  • microsoft/phi-3.5-mini-… 38117 ms
  • p95 • avg • N 74465 ms • 43552 ms • 8
  • deepseek/deepseek-r1-di… 30686 ms
  • p95 • avg • N 38469 ms • 30695 ms • 8
  • google/gemma-3-12b-it 26567 ms
  • p95 • avg • N 37866 ms • 28760 ms • 7
Per-scene duration for this suite.
Suite Actions
Completion Progress 100%
4 of 4 scenes completed
Evaluation Schema
Enhanced Framework
Version v2 ACTIVE
0 dimensions

Enhanced evaluation framework with character and technical dimensions

Top Weighted Dimensions View Details
Character Authenticity
0.182
Plan Validity
0.155
Contextual Intelligence
0.136
Recent Runs
39775418
Dec. 17, 2025, midnight
45493557
Dec. 16, 2025, midnight
36921127
Dec. 15, 2025, midnight
39710554
Dec. 14, 2025, midnight
36980786
Dec. 13, 2025, midnight
44838269
Dec. 12, 2025, midnight
38778783
Dec. 11, 2025, midnight
38161323
Dec. 10, 2025, midnight
43086581
Dec. 9, 2025, midnight
37902721
Dec. 8, 2025, midnight
Latency Overview (This Suite)