Lila Beaumont

food-hospitality-culinary-arts-food-critic-characters-julia-child v2.0 Ethical
Backstory: A former Paris-trained pastry chef, Lila pivoted to food journalism after winning a regional dessert competition. She now travels across North America and Europe reviewing Michelin-level restaurants, translating haute cuisine into language everyday diners can enjoy. Her writing balances meticulous sensory detail with a warm, encouraging tone, always sneaking in educational tidbits for curious readers.
100% Complete
6/6 scenes
Model Performance Overview
Scene Performance Matrix
Scene meta-llama/llama-3.… mistralai/mistral-7… [email protected] [email protected] qwen/qwen-2.5-7b-in… qwen/qwen3-14b qwen/qwen3-8b
wine-tip
Quick wine tasting tip
0.673
Details
0.890
Details
0.000
Details
Error
0.000
Details
Error
0.626
Details
0.861
Details
0.860
Details
plating-feedback
Encourage an aspiring chef
0.814
Details
0.726
Details
0.000
Details
Error
0.000
Details
Error
0.735
Details
0.780
Details
0.755
Details
grand-atelier-review
Magazine column: Grand Atelier
0.000
Details
0.395
Details
0.000
Details
Error
0.000
Details
Error
0.400
Details
0.195
Details
0.488
Details
podcast-butter
Podcast monologue on French butter
0.650
Details
0.804
Details
0.000
Details
Error
0.000
Details
Error
0.332
Details
0.713
Details
0.744
Details
steakhouse-dietary
Guide a diner with restrictions
0.298
Details
0.724
Details
0.000
Details
Error
0.000
Details
Error
0.469
Details
0.000
Details
0.774
Details
superchat-patisserie
Paris patisserie picks
0.721
Details
0.841
Details
0.000
Details
Error
0.000
Details
Error
0.000
Details
0.684
Details
0.789
Details
Test Scenes 6
0
Scene Order
Quick wine tasting tip
ID: wine-tip
🎯 Goal:
Offer an approachable, jargon-light tip on tasting wine in ≤60 words while keeping Lila’s warm voice.
📨 Input Events:
chat_msg viewer:sommelier_novice
"Lila, one quick pointer for tasting red wine like a pro?"
Ready for Testing
1
Scene Order
Encourage an aspiring chef
ID: plating-feedback
🎯 Goal:
Give constructive, kind feedback on plating technique, highlighting at least one strength and one improvement idea.
📨 Input Events:
chat_msg viewer:chef_student
"Here’s my hamachi crudo photo—any tips to elevate the plating?"
Ready for Testing
2
Scene Order
Magazine column: Grand Atelier
ID: grand-atelier-review
🎯 Goal:
Write a 450–550 word review blending vivid sensory detail, two educational notes, and an inviting tone.
📨 Input Events:
chat_msg editor:culinary_monthly
"Deadline tonight: 500-word review of newly minted Grand Atelier in Montreal. Keep it accessible."
Ready for Testing
3
Scene Order
Podcast monologue on French butter
ID: podcast-butter
🎯 Goal:
Deliver a ~3-minute (~400 word) explanatory monologue comparing cultured vs. demi-sel French butter, including two usage tips and one historical fact.
📨 Input Events:
chat_msg host:taste_talks
"Lila, the mic is yours—educate listeners on the different French butters."
Ready for Testing
4
Scene Order
Guide a diner with restrictions
ID: steakhouse-dietary
🎯 Goal:
Recommend two satisfying, gluten-free options at a classic steakhouse, showing empathy and clarity.
📨 Input Events:
chat_msg viewer:gf_diner
"I’m celiac but heading to a fancy steakhouse. What can I safely order?"
Ready for Testing
5
Scene Order
Paris patisserie picks
ID: superchat-patisserie
🎯 Goal:
Thank donor warmly and list top three Paris patisseries with one signature item each, all within 120 words.
📨 Input Events:
superchat viewer:sweettooth42 YouTube $20
"Best patisseries in Paris?"
Ready for Testing
Latency by Model (This Suite)
Fastest
  • [email protected]/Qw… 8079 ms
  • p95 • avg • N 12128 ms • 8453 ms • 6
  • qwen/qwen-2.5-7b-instru… 23626 ms
  • p95 • avg • N 95549 ms • 37663 ms • 9
  • meta-llama/llama-3.1-8b… 25270 ms
  • p95 • avg • N 35719 ms • 25108 ms • 11
  • qwen/qwen3-14b 28069 ms
  • p95 • avg • N 40150 ms • 28302 ms • 12
  • qwen/qwen3-8b 28266 ms
  • p95 • avg • N 40195 ms • 28795 ms • 12
Slowest
  • [email protected]/Qw… 40511 ms
  • p95 • avg • N 194200 ms • 74190 ms • 6
  • mistralai/mistral-7b-in… 29215 ms
  • p95 • avg • N 38769 ms • 29833 ms • 12
  • qwen/qwen3-8b 28266 ms
  • p95 • avg • N 40195 ms • 28795 ms • 12
  • qwen/qwen3-14b 28069 ms
  • p95 • avg • N 40150 ms • 28302 ms • 12
  • meta-llama/llama-3.1-8b… 25270 ms
  • p95 • avg • N 35719 ms • 25108 ms • 11
Per-scene duration for this suite.
Suite Actions
Completion Progress 100%
6 of 6 scenes completed
Evaluation Schema
Enhanced Framework
Version v2 ACTIVE
0 dimensions

Enhanced evaluation framework with character and technical dimensions

Top Weighted Dimensions View Details
Character Authenticity
0.182
Plan Validity
0.155
Contextual Intelligence
0.136
Recent Runs
38202745
Dec. 17, 2025, 12:01 a.m.
53770062
Dec. 16, 2025, 12:01 a.m.
33628025
Dec. 15, 2025, 12:01 a.m.
35155723
Dec. 14, 2025, 12:01 a.m.
34091924
Dec. 13, 2025, 12:01 a.m.
47130965
Dec. 12, 2025, 12:01 a.m.
43357711
Dec. 11, 2025, 12:01 a.m.
35789508
Dec. 10, 2025, 12:01 a.m.
49550408
Dec. 9, 2025, 12:01 a.m.
37972037
Dec. 8, 2025, 12:01 a.m.
Latency Overview (This Suite)